56 research outputs found

    Spin transfer torque oscillator based on asymmetric magnetic tunnel junctions

    Full text link
    We present a study of the spin transfer torque oscillator based on CoFeB/MgO/CoFeB asymmetric magnetic tunnel junctions. We observe microwave precession in junctions with different thickness of the free magnetization layer. Taking advantage of the ferromagnetic interlayer exchange coupling between the free and reference layer in the MTJ and perpendicular interface anisotropy in thin CoFeB electrode we demonstrate the nanometer scale device that can generate high frequency signal without external magnetic field applied. The amplitude of the oscillation exceeds 10 nV/Hz^0.5 at 1.5 GHz.Comment: 4 pages, 4 figures, to be submitted to Applied Physics Letter

    Magnetic field sensor with voltage-tunable sensing properties

    Full text link
    We report on a magnetic field sensor based on CoFeB/MgO/CoFeB magnetic tunnel junctions. By taking advantage of the perpendicular magnetic anisotropy of the CoFeB/MgO interface, the magnetization of the sensing layer is tilted out-of-plane which results in a linear response to in-plane magnetic fields. The application of a bias voltage across the MgO tunnel barrier of the field sensor affects the magnetic anisotropy and thereby its sensing properties. An increase of the maximum sensitivity and simultaneous decrease of the magnetic field operating range by a factor of two is measured. Based on these results, we propose a voltage-tunable sensor design that allows for active control of the sensitivity and the operating filed range with the strength and polarity of the applied bias voltage.Comment: 4 pages, 4 figures, lette
    corecore